Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2307747120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669373

RESUMO

Protein import into chloroplasts is powered by ATP hydrolysis in the stroma. Establishing the identity and functional mechanism of the stromal ATPase motor that drives import is critical for understanding chloroplast biogenesis. Recently, a complex consisting of Ycf2, FtsHi1, FtsHi2, FtsHi4, FtsHi5, FtsH12, and malate dehydrogenase was shown to be important for chloroplast protein import, and it has been proposed to act as the motor driving protein translocation across the chloroplast envelope into the stroma. To gain further mechanistic understanding of how the motor functions, we performed membrane association and topology analyses on two of its subunits, FtsHi1 and FtsHi2. We isolated cDNA clones encoding FtsHi1 and FtsHi2 preproteins to perform in vitro import experiments in order to determine the exact size of each mature protein. We also generated antibodies against the C-termini of the proteins, i.e., where their ATPase domains reside. Protease treatments and alkaline and high-salt extractions of chloroplasts with imported and endogenous proteins revealed that FtsHi1 is an integral membrane protein with its C-terminal portion located in the intermembrane space of the envelope, not the stroma, whereas FtsHi2 is a soluble protein in the stroma. We further complemented an FtsHi1-knockout mutant with a C-terminally tagged FtsHi1 and obtained identical results for topological analyses. Our data indicate that the model of a single membrane-anchored pulling motor at the stromal side of the inner membrane needs to be revised and suggest that the Ycf2-FtsHi complex may have additional functions.


Assuntos
Membranas Intracelulares , Membrana Nuclear , Membranas , Adenosina Trifosfatases , Cloroplastos , Dineínas , Cinesinas
2.
Proc Natl Acad Sci U S A ; 119(11): e2123353119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275795

RESUMO

SignificanceAlthough plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Proteínas de Cloroplastos , Proteínas de Membrana Transportadoras , Plastídeos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Mutação com Ganho de Função , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
3.
Plant Direct ; 5(11): e356, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765862

RESUMO

Chloroplasts are divided into six subcompartments: the outer membrane, intermembrane space, and inner membrane of the envelope, the stroma, the thylakoid membrane, and the thylakoid lumen. Compared with our knowledge of protein import into other subcompartments, extremely little is known about how proteins are imported into the intermembrane space of the envelope. Tic22 was one of the first proteins identified as localizing to the intermembrane space and the only one for which import has been analyzed in some detail. However, conflicting results have been obtained concerning whether the general translocon is used to import Tic22 into the intermembrane space. Taking advantage of available translocon component mutants, we reanalyzed import of Tic22. We reveal reduced in vitro import of Tic22 preprotein (prTic22) into chloroplasts isolated from the Arabidopsis mar1 and tic236 mutants, which are functional knockdown mutants of the outer-membrane channel Toc75 and the intermembrane space linker Tic236, respectively. Import competition experiments also showed that prTic22 import was reduced by excess amounts of a stroma-targeted preprotein. Our results indicate that prTic22 uses at least part of the general translocon for import into the intermembrane space.

4.
Nature ; 564(7734): 125-129, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30464337

RESUMO

The two-membrane envelope is a defining feature of chloroplasts. Chloroplasts evolved from a Gram-negative cyanobacterial endosymbiont. During evolution, genes of the endosymbiont have been transferred to the host nuclear genome. Most chloroplast proteins are synthesized in the cytosol as higher-molecular-mass preproteins with an N-terminal transit peptide. Preproteins are transported into chloroplasts by the TOC and TIC (translocons at the outer- and inner-envelope membranes of chloroplasts, respectively) machineries1,2, but how TOC and TIC are assembled together is unknown. Here we report the identification of the TIC component TIC236; TIC236 is an integral inner-membrane protein that projects a 230-kDa domain into the intermembrane space, which binds directly to the outer-membrane channel TOC75. The knockout mutation of TIC236 is embryonically lethal. In TIC236-knockdown mutants, a smaller amount of the inner-membrane channel TIC20 was associated with TOC75; the amount of TOC-TIC supercomplexes was also reduced. This resulted in a reduced import rate into the stroma, though outer-membrane protein insertion was unaffected. The size and the essential nature of TIC236 indicate that-unlike in mitochondria, in which the outer- and inner-membrane translocons exist as separate complexes and a supercomplex is only transiently assembled during preprotein translocation3,4-a long and stable protein bridge in the intermembrane space is required for protein translocation into chloroplasts. Furthermore, TIC236 and TOC75 are homologues of bacterial inner-membrane TamB5 and outer-membrane BamA, respectively. Our evolutionary analyses show that, similar to TOC75, TIC236 is preserved only in plants and has co-evolved with TOC75 throughout the plant lineage. This suggests that the backbone of the chloroplast protein-import machinery evolved from the bacterial TamB-BamA protein-secretion system.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Pisum sativum/citologia , Ligação Proteica , Precursores de Proteínas/metabolismo , Transporte Proteico
5.
Plant J ; 92(2): 178-188, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28745032

RESUMO

Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.


Assuntos
Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Arabidopsis , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Pisum sativum/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico
6.
Plant Physiol ; 173(4): 2148-2162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28250068

RESUMO

Most chloroplast proteins are synthesized in the cytosol as higher molecular weight preproteins and imported via the translocons in the outer (TOC) and inner (TIC) envelope membranes of chloroplasts. Toc159 functions as a primary receptor and directly binds preproteins through its dimeric GTPase domain. As a first step toward a molecular understanding of how Toc159 mediates preprotein import, we mapped the preprotein-binding regions on the Toc159 GTPase domain (Toc159G) of pea (Pisum sativum) using cleavage by bound preproteins conjugated with the artificial protease FeBABE and cysteine-cysteine cross-linking. Our results show that residues at the dimer interface and the switch II region of Toc159G are in close proximity to preproteins. The mature portion of preproteins was observed preferentially at the dimer interface, whereas the transit peptide was found at both regions equally. Chloroplasts from transgenic plants expressing engineered Toc159 with a cysteine placed at the dimer interface showed increased cross-linking to bound preproteins. Our data suggest that, during preprotein import, the Toc159G dimer disengages and the dimer interface contacts translocating preproteins, which is consistent with a model in which conformational changes induced by dimer-monomer conversion in Toc159 play a direct role in facilitating preprotein import.


Assuntos
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Proteínas de Cloroplastos/genética , Eletroforese em Gel de Poliacrilamida , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Multimerização Proteica , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos
7.
Plant Physiol ; 172(1): 235-43, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27388682

RESUMO

Toc75 is the channel for protein translocation across the chloroplast outer envelope membrane. Toc75 belongs to the Omp85 protein family and consists of three N-terminal polypeptide transport-associated (POTRA) domains that are essential for the functions of Toc75, followed by a membrane-spanning ß-barrel domain. In bacteria, POTRA domains of Omp85 family members are located in the periplasm, where they interact with other partner proteins to accomplish protein secretion and outer membrane protein assembly. However, the orientation and therefore the molecular function of chloroplast Toc75 POTRA domains remain a matter of debate. We investigated the topology of Toc75 using bimolecular fluorescence complementation and immunogold electron microscopy. Bimolecular fluorescence complementation analyses showed that in stably transformed plants, Toc75 N terminus is located on the intermembrane space side, not the cytosolic side, of the outer membrane. Immunogold labeling of endogenous Toc75 POTRA domains in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana) confirmed that POTRA domains are located in the intermembrane space of the chloroplast envelope.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Precursores de Proteínas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Cloroplastos/ultraestrutura , Immunoblotting , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/genética , Microscopia Confocal , Microscopia Imunoeletrônica , Pisum sativum/genética , Pisum sativum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Precursores de Proteínas/genética , Transporte Proteico
8.
Plant Cell ; 28(1): 219-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26721860

RESUMO

DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.


Assuntos
Arabidopsis/metabolismo , Vias Biossintéticas , Cloroplastos/metabolismo , Galactolipídeos/biossíntese , Lignina/metabolismo , Lipídeos de Membrana/biossíntese , Oxilipinas/metabolismo , Floema/metabolismo , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Ciclopentanos/farmacologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Inflorescência/anatomia & histologia , Mutação/genética , Oxilipinas/farmacologia , Fenótipo , Floema/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
Plant Physiol ; 170(2): 857-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26676256

RESUMO

Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Pisum sativum/metabolismo , Peptídeos/metabolismo , Transporte Proteico
10.
PLoS One ; 8(7): e70384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894646

RESUMO

Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/classificação , Evolução Molecular , Filogenia , Arabidopsis/química , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/classificação , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Sequência Conservada/genética , Cianobactérias/química , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/classificação , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Plantas/química , Plantas/classificação , Proteômica , Estresse Fisiológico/genética
11.
Plant J ; 75(5): 847-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23711301

RESUMO

Tic110 is a major component of the chloroplast protein import translocon. Two functions with mutually exclusive structures have been proposed for Tic110: a protein-conducting channel with six transmembrane domains and a scaffold with two N-terminal transmembrane domains followed by a large soluble domain for binding transit peptides and other stromal translocon components. To investigate the structure of Tic110, Tic110 from Cyanidioschyzon merolae (CmTic110) was characterized. We constructed three fragments, CmTic110A , CmTic110B and CmTic110C , with increasing N-terminal truncations, to perform small-angle X-ray scattering (SAXS) and X-ray crystallography analyses and Dali structural comparison. Here we report the molecular envelope of CmTic110B and CmTic110C determined by SAXS, and the crystal structure of CmTic110C at 4.2 Å. Our data indicate that the C-terminal half of CmTic110 possesses a rod-shaped helix-repeat structure that is too flattened and elongated to be a channel. The structure is most similar to the HEAT-repeat motif that functions as scaffolds for protein-protein interactions.


Assuntos
Proteínas de Algas/química , Proteínas de Cloroplastos/química , Proteínas de Membrana/química , Rodófitas/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Proteínas de Cloroplastos/genética , Cristalografia por Raios X , Proteínas de Membrana/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína
12.
Plant Physiol ; 154(3): 1172-82, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20841453

RESUMO

Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.


Assuntos
Cloroplastos/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Genes de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico , RNA de Plantas/genética , Receptores de Superfície Celular/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
J Cell Biol ; 175(6): 893-900, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17158958

RESUMO

Three components of the chloroplast protein translocon, Tic110, Hsp93 (ClpC), and Tic40, have been shown to be important for protein translocation across the inner envelope membrane into the stroma. We show the molecular interactions among these three components that facilitate processing and translocation of precursor proteins. Transit-peptide binding by Tic110 recruits Tic40 binding to Tic110, which in turn causes the release of transit peptides from Tic110, freeing the transit peptides for processing. The Tic40 C-terminal domain, which is homologous to the C terminus of cochaperones Sti1p/Hop and Hip but with no known function, stimulates adenosine triphosphate hydrolysis by Hsp93. Hsp93 dissociates from Tic40 in the presence of adenosine diphosphate, suggesting that Tic40 functions as an adenosine triphosphatase activation protein for Hsp93. Our data suggest that chloroplasts have evolved the Tic40 cochaperone to increase the efficiency of precursor processing and translocation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Choque Térmico/genética , Hidrólise , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Processamento de Proteína Pós-Traducional
14.
Plant Cell ; 18(9): 2247-57, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16891400

RESUMO

An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/ultraestrutura , Clonagem Molecular , Germinação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Alinhamento de Sequência
15.
Plant Physiol ; 139(1): 425-36, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16126858

RESUMO

The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in yeast (Saccharomyces cerevisiae) and mammals. In Arabidopsis (Arabidopsis thaliana), only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains: a central domain, flanked by an ATX1-like domain, and a C-terminal domain. The ATX1-like and C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by The Arabidopsis Information Resource complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Superóxido Dismutase/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/classificação
16.
Plant Cell ; 16(8): 2078-88, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15258267

RESUMO

Most chloroplast outer-membrane proteins are synthesized at their mature size without cleavable targeting signals. Their insertion into the outer membrane is insensitive to thermolysin pretreatment of chloroplasts and does not require ATP. It has therefore been assumed that insertion of outer-membrane proteins proceeds through a different pathway from import into the interior of chloroplasts, which requires a thermolysin-sensitive translocon complex and ATP. Here, we show that a model outer-membrane protein, OEP14, competed with the import of a chloroplast interior protein, indicating that the two import pathways partially overlapped. Cross-linking studies showed that, during insertion, OEP14 was associated with Toc75, a thermolysin-resistant component of the outer-membrane protein-conducting channel that mediates the import of interior-targeted precursor proteins. Whereas almost no OEP14 inserted into protein-free liposomes, OEP14 inserted into proteoliposomes containing reconstituted Toc75 with a high efficiency. Taken together, our data indicate that Toc75 mediates OEP14 insertion, and therefore plays a dual role in the targeting of proteins to the outer envelope membrane and interior of chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas , Precursores de Proteínas/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Membrana Celular/química , Membrana Celular/metabolismo , Membranas Intracelulares/química , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/genética , Pisum sativum/genética , Pisum sativum/metabolismo , Precursores de Proteínas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico/fisiologia
17.
Plant Physiol ; 135(3): 1314-23, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15266056

RESUMO

Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine biosynthesis. The cia1 mutant had normal green cotyledons but small and albino/pale-green mosaic leaves. Adding AMP, but not cytokinin or NADH, to plant liquid cultures partially complemented the mutant phenotypes. Both ATase1 and ATase2 were localized to chloroplasts. Overexpression of ATase1 fully complemented the ATase2-deficient phenotypes. A T-DNA insertion knockout mutant of the ATase1 gene was also obtained. The mutant was indistinguishable from the wild type. A double mutant of cia1/ATase1-knockout had the same phenotype as cia1, suggesting at least partial gene redundancy between ATase1 and ATase2. Characterizations of the cia1 mutant revealed that mutant leaves had slightly smaller cell size but only half the cell number of wild-type leaves. This phenotype confirms the role of de novo purine biosynthesis in cell division. Chloroplasts isolated from the cia1 mutant imported proteins at an efficiency less than 50% that of wild-type chloroplasts. Adding ATP and GTP to isolated mutant chloroplasts could not restore the import efficiency. We conclude that de novo purine biosynthesis is not only important for cell division, but also for chloroplast biogenesis.


Assuntos
Amidofosforribosiltransferase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Deleção de Genes , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Sequência Conservada , Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Humanos , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...